已收录 273595 条政策
 政策提纲
  • 暂无提纲
Behaviour Generation in Humanoids by Learning Potential-Based Policies from Constrained Motion
[摘要] Movement generation that is consistent with observed or demonstrated behaviour is an efficient way to seed movement planning in complex, high-dimensional movement systems like humanoid robots. We present a method for learning potential-based policies from constrained motion data. In contrast to previous approaches to direct policy learning, our method can combine observations from a variety of contexts where different constraints are in force, to learn the underlying unconstrained policy in form of its potential function. This allows us to generalise and predict behaviour where novel constraints apply. We demonstrate our approach on systems of varying complexity, including kinematic data from the ASIMO humanoid robot with 22 degrees of freedom.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 生物技术
[关键词]  [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文