已收录 271055 条政策
 政策提纲
  • 暂无提纲
Artificial-Intelligence-Based Techniques to Evaluate Switching Overvoltages during Power System Restoration
[摘要] This paper presents an approach to the study of switching overvoltages during power equipment energization. Switching action is one of the most important issues in the power system restoration schemes. This action may lead to overvoltages which can damage some equipment and delay power system restoration. In this work, switching overvoltages caused by power equipment energization are evaluated using artificial-neural-network- (ANN-) based approach. Both multilayer perceptron (MLP) trained with Levenberg-Marquardt (LM) algorithm and radial basis function (RBF) structure have been analyzed. In the cases of transformer and shunt reactor energization, the worst case of switching angle and remanent flux has been considered to reduce the number of required simulations for training ANN. Also, for achieving good generalization capability for developed ANN, equivalent parameters of the network are used as ANN inputs. Developed ANN is tested for a partial of 39-bus New England test system, and results show the effectiveness of the proposed method to evaluate switching overvoltages.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 人工智能
[关键词]  [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文