已收录 271409 条政策
 政策提纲
  • 暂无提纲
Extracellular Vesicles from Caveolin-Enriched Microdomains Regulate Hyaluronan-Mediated Sustained Vascular Integrity
[摘要] Defects in vascular integrity are an initiating factor in several disease processes. We have previously reported that high molecular weight hyaluronan (HMW-HA), a major glycosaminoglycan in the body, promotes rapid signal transduction in human pulmonary microvascular endothelial cells (HPMVEC) leading to barrier enhancement. In contrast, low molecular weight hyaluronan (LMW-HA), produced in disease states by hyaluronidases and reactive oxygen species (ROS), induces HPMVEC barrier disruption. However, the mechanism(s) of sustained barrier regulation by HA are poorly defined. Our results indicate that long-term (6–24 hours) exposure of HMW-HA induced release of a novel type of extracellular vesicle from HLMVEC called enlargeosomes (characterized by AHNAK expression) while LMW-HA long-term exposure promoted release of exosomes (characterized by CD9, CD63, and CD81 expression). These effects were blocked by inhibiting caveolin-enriched microdomain (CEM) formation. Further, inhibiting enlargeosome release by annexin II siRNA attenuated the sustained barrier enhancing effects of HMW-HA. Finally, exposure of isolated enlargeosomes to HPMVEC monolayers generated barrier enhancement while exosomes led to barrier disruption. Taken together, these results suggest that differential release of extracellular vesicles from CEM modulate the sustained HPMVEC barrier regulation by HMW-HA and LMW-HA. HMW-HA-induced specialized enlargeosomes can be a potential therapeutic strategy for diseases involving impaired vascular integrity.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 分子生物学,细胞生物学和基因
[关键词]  [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文