已收录 270995 条政策
 政策提纲
  • 暂无提纲
Fine Structure Recombinational Analysis of Cloned Genes Using Yeast Transformation
[摘要] We describe a general method for analyzing the genetic fine structure of plasmid-borne genes in yeast. Previously we had reported that a linearized plasmid is efficiently rescued by recombination with a homologous restriction fragment when these are co-introduced by DNA-mediated transformation of yeast. Here, we show that a mutation can be localized to a small DNA interval when members of a deletion series of wild-type restriction fragments are used in the rescue of a linearized mutant plasmid. The resolution of this method is to at least 30 base pairs and is limited by the loss of a wild-type marker with proximity to a free DNA end. As a means for establishing the nonidentity of two mutations, we determined the resolution of two-point crosses with a mutant linearized plasmid and a mutant homologous restriction fragment. Recombination between mutations separated by as little as 100 base pairs was detected. Moreover, the results indicate that exchange within a marked interval results primarily from one of two single crossovers that repair the linearized plasmid. These approaches to mapping the genetic fine structure of plasmids should join existing methods in a robust approach to the mutational analysis of gene structure in yeast.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 医学(综合)
[关键词]  [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文