已收录 273081 条政策
 政策提纲
  • 暂无提纲
Nonlinear Finite Element Analysis of Reinforced Concrete Coupled Shear Walls
[摘要] This thesis is concerned with the development of an inelastic material model to be used in conjunction with the finite element technique to simulate the behaviour of reinforced concrete shear-walls under lateral loads. The proposed computational model is capable of tracing the entire nonlinear response up to ultimate load conditions. The main features of the nonlinear behaviour of concrete and steel are incorporated in the numerical model. These include cracking, nonlinear biaxial stress-strain relationships in concrete up to crushing and yielding of steel. The investigation first considers the linear elastic behaviour of coupled shear-walls then a consistent material model that matches the existing experimental evidence for the behaviour of plain concrete under monotonic biaxial loading is considered. The reinforcing steel is idealized as bilinear uniaxially stressed material. The individual material models are combined with the finite element technique to demonstrate their applicability. To check the validity and accuracy of the numerical model, finite element calculations are compared with experimental results for shallow and deep beams, shear panels subjected to monotonic loading. Finally, various hypothetical coupled shear-walls and tested microconcrete shear walls were analysed highlighting the history of crack propagation, deflections, crushing of concrete and yielding of steel up to failure. The resulting model should prove to be a simple useful research tool for use in the study of any reinforced concrete structure which may be considered to be in a state of plane stress.
[发布日期]  [发布机构] University:University of Glasgow
[效力级别]  [学科分类] 
[关键词] Civil engineering [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文