已收录 273134 条政策
 政策提纲
  • 暂无提纲
The competitive ability and fitness components of the Methoprene-tolerant (Met) Drosophila mutant resistant to juvenile hormone analog insecticides.
[摘要] The Methoprene-tolerant (Met) mutation of Drosophila melanogaster results in a high (100-fold) level of resistance to the insecticide methoprene, a chemical analog of juvenile hormone. Pest species that are under control with methoprene may therefore have the potential to evolve resistance via a mutation homologous to Met. To evaluate the potential of such mutants to persist in wild populations, we must understand the fitness of flies carrying Met. In the absence of methoprene, Met flies were outcompeted by a wild-type strain both in a multigeneration population cage and in single-generation competition experiments. To determine which fitness component(s) is responsible for the competitive disadvantage, the survival, time of development, and fecundity of flies homozygous for each of five Met alleles were compared with wild type. Small but significant differences were found between the pooled Met alleles and wild type for pupal development time, pupal mortality, and early adult fecundity. These differences result in a large competitive disadvantage. Although Met flies were found to have reduced fitness by these measures, the phenotype is not as severe as might be expected from a knowledge of the disruption of juvenile hormone regulation seen in Met flies. It is concluded that (1) although Met flies have a large advantage under methoprene selection, they will quickly become outcompeted upon relaxation of methoprene usage, (2) even a seemingly severe disruption of juvenile hormone regulation has no drastic effect on the vital functions of the insect and (3) small differences in fitness components can translate into a large competitive disadvantage.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 医学(综合)
[关键词]  [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文