已收录 273506 条政策
 政策提纲
  • 暂无提纲
Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans.
[摘要] Dauer larva formation in Caenorhabditis elegans is controlled by chemosensory cells that respond to environmental cues. Genetic interactions among mutations in 23 genes that affect dauer larva formation were investigated. Mutations in seven genes that cause constitutive dauer formation, and mutations in 16 genes that either block dauer formation or result in the formation of abnormal dauers, were analyzed. Double mutants between dauer-constitutive and dauer-defective mutations were constructed and characterized for their capacity to form dauer larvae. Many of the genes could be interpreted to lie in a simple linear epistasis pathway. Three genes, daf-16, daf-18 and daf-20, may affect downstream steps in a branched part of the pathway. Three other genes, daf-2, daf-3 and daf-5, displayed partial or complex epistasis interactions that were difficult to interpret as part of a simple linear pathway. Dauer-defective mutations in nine genes cause structurally defective chemosensory cilia, thereby blocking chemosensation. Mutations in all nine of these genes appear to fall at a single step in the epistasis pathway. Dauer-constitutive mutations in one gene, daf-11, were strongly suppressed for dauer formation by mutations in the nine cilium-structure genes. Mutations in the other six dauer-constitutive genes caused dauer formation despite the absence of functional chemosensory endings. These results suggest that daf-11 is directly involved in chemosensory transduction essential for dauer formation, while the other Daf-c genes play roles downstream of the chemosensory step.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 医学(综合)
[关键词]  [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文