Modern VLSI Analogue Filter Design: Methodology and Software Development
[摘要] This thesis describes various approaches for the design of modern analogue filters and provides a practical filter and equaliser design aids system XFILT. The thesis begins by placing the analogue filter design technique and software into a historical and technology perspective. The evolution of the analogue filter is traced from early work, through the passive-RLC to transconductor-C and switched-current realisations. The software development in VLSI analogue filter automation is reviewed. For SC filter design, a cascade SC design approach which includes a novel pole-zero pairing method and a comprehensive comparison of SC filter realisation using different biquads are presented. Very useful guidelines for the choice of a suitable biquad structure according to the nature of the filter problem are presented. The canonical realisations of SC filter are studied. The multirate SC system design is described. Several strategies and the algorithms for multirate SC system design are proposed. In transconductor-C filter design research, the definition of a canonical ladder based transconductor-C filter is introduced, and two canonical ladder based transconductor-C filter design approaches are proposed. The ladder based transconductor-C equaliser design is also discussed. A practical video frequency transconductor-C filter and equaliser design is given to demonstrate the utility of the matrix design method and the design software. A new approach to realise exact ladder based SI filter with first and second generation memory cell has been proposed. The bilinear transformation is used in the design procedure. Eight different SI ladder based structures can be obtained for one prototype ladder. Therefore it provides SI filter designers with various circuit choices based on different requirement such as area, maximum ratio of transistor aspect ratio limit, sensitivity or noise performance. Techniques to improve dynamic range and reduce circuit parameter spread are also presented. The proposed approach is well suited for a computer compiler implementation. A suitability study of each decomposition method for different filtering applications is also carried out and a general guideline for the choice of different decomposition methods is obtained. A comparison study on SI filter sensitivity performance based on first generation and second generation memory cells is carried out. Using four filter examples, it is demonstrated that SI filters based on a second generation SI memory cell have good sensitivity performance. For SI filters based on first generation memory cells, it is shown that a high ratio of clock frequency to cutoff frequency in the lowpass case, or a high ratio of clock frequency to midband frequency in the bandpass case would introduce high sensitivity. A novel approach for SI ladder filter based on the S2I integrator is also proposed and a canonical realisation for SI filter based on S2I integrator is developed. Examination of SI equaliser design reveals that cascade structure is a better candidate than ladder based structure. Multirate SI filter system design is also studied. Finally, a very brief introduction to the assembly of the design methods in this thesis into a software package XHLT for VLSI analogue filter and equaliser design is given. The user aspects of XFILT have been discussed and various capabilities of XFILT are demonstrated. Several advanced facilities which remove traditional design limitations are illustrated. The philosophy of the system is explained. It is shown that the distinguished features of XFILT are Ease of Use. General Applicability, and Ease of Extension. The system structure is described and the graphics interface which acts both as user friendly interface and a system manager of all the software is outlined. Fabricated SC, transconductor-C, and SI filter and equaliser have been designed by using XFILT. The system is under further enhancement toward a commercial product.
[发布日期] [发布机构] University:University of Glasgow
[效力级别] [学科分类]
[关键词] Electrical engineering [时效性]