The Grothendieck Trace and the de Rham Integral
[摘要] On a smooth $n$-dimensional complete variety $X$ over ${mathbb C}$ weshow that the trace map ${ildeheta}_X colonreakH^n (X,Omega_X^n)o {mathbb C}$ arising from Lipman's version of Grothendieck dualityin cite{ast-117} agrees with $$(2pi i)^{-n} (-1)^{n(n-1)/2} int_X colon H^{2n}_{DR} (X,{mathbbC}) o {mathbb C}$$ under the Dolbeault isomorphism.
[发布日期] [发布机构]
[效力级别] [学科分类] 数学(综合)
[关键词] [时效性]