已收录 272983 条政策
 政策提纲
  • 暂无提纲
On Functions Whose Graph is a Hamel Basis, II
[摘要] We say that a function $h from eal o eal$ is a Hamel function($h in ham$) if $h$, considered as a subset of $eal^2$, is a Hamelbasis for $eal^2$. We show that $A(ham)geqomega$, emph{i.e.,} forevery finite $F subseteq eal^eal$ there exists $fineal^eal$such that $f+F subseteq ham$. From the previous work of the authorit then follows that $A(ham)=omega$.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 数学(综合)
[关键词] Hamel basis;additive;Hamel functions [时效性] 
   浏览次数:9      统一登录查看全文      激活码登录查看全文