Thermal-hydraulic analysis of LBE spallation target for accelerator-driven systems
[摘要] In an accelerator-driven subcritical system (ADS), a high-performance spallation neutron source is used to feed the subcritical reactor. Neutron generation depends on the proton beam intensity. If the beam intensity is increased by a given factor, the number of generated neutrons will increase. The mechanism yielding a high rate of neutron production per energy is the spallation process, and this mechanism produces very high-energy deposition in the spallation target material. Producing a high rate of neutrons is accompanied by creation of problems of decay heat cooling and radiological protection. As a first step in designing a full-scale industrial ADS, a small-scale experimental ADS, which is similar to the European experimental ADS (XADS) is analysed. The analysis presented in this paper is based on lead–bismuth eutectic (LBE) cooled XADS-type experimental reactors, designed during the European experimental (PDS-XADS) project. Computational fluid dynamics analysis has been carried out for the spallation target. Steady-state behaviour and shear stress transport turbulence model with the automatic wall treatment were applied in the present analysis.
[发布日期] [发布机构]
[效力级别] [学科分类] 物理(综合)
[关键词] Thermal-hydraulic analysis;accelerator-driven system;spallation target;shear stress transport;computational fluid dynamics. [时效性]