已收录 272912 条政策
 政策提纲
  • 暂无提纲
Effects of diadenosine tetraphosphate on FGF9-induced chloride flux changes in achondroplastic chondrocytes
[摘要] Achondroplasia, the most common type of dwarfism, is characterized by a mutation in the fibroblast growth factor receptor 3 (FGFR3). Achondroplasia is an orphan pathology with no pharmacological treatment so far. However, the possibility of using the dinucleotide diadenosine tetraphosphate (Ap4A) with therapeutic purposes in achondroplasia has been previously suggested. The pathogenesis involves the constitutive activation of FGFR3, resulting in altered biochemical and physiological processes in chondrocytes. Some of these altered processes can be influenced by changes in cell volume and ionic currents. In this study, the action of mutant FGFR3 on chondrocyte size and chloride flux in achondroplastic chondrocytes was investigated as well as the effect of the Ap4A on these processes triggered by mutant FGFR3. Stimulation with the fibroblast growth factor 9 (FGF9), the preferred ligand for FGFR3, induced an enlarged achondroplastic chondrocyte size and an increase in the intracellular chloride concentration, suggesting the blockade of chloride efflux. Treatment with the Ap4A reversed the morphological changes triggered by FGF9 and restored the chloride efflux. These data provide further evidence for the therapeutic potential of this dinucleotide in achondroplasia treatment.

[发布日期]  [发布机构] 
[效力级别]  [学科分类] 分子生物学,细胞生物学和基因
[关键词] Fibroblast growth factor receptor 3 [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文