已收录 272893 条政策
 政策提纲
  • 暂无提纲
The structure of the nucleoside triphosphate diphosphohydrolases (NTPDases) as revealed by mutagenic and computational modeling analyses
[摘要] Over the last seven years our laboratory has focused on the determination of the structural aspects of nucleoside triphosphate diphosphohydrolases (NTPDases) using site-directed mutagenesis and computational comparative protein modeling to generate hypotheses and models for the hydrolytic site and enzymatic mechanism of the family of NTPDase nucleotidases. This review summarizes these studies utilizing NTPDase3 (also known as CD39L3 and HB6), an NTPDase family member that is intermediate in its characteristics between the more widely distributed and studied NTPDase1 (also known as CD39) and NTPDase2 (also known as CD39L1 and ecto-ATPase) enzymes. Relevant site-directed mutagenesis studies of other NTPDases are also discussed and compared to NTPDase3 results. It is anticipated that many of the results and conclusions reached via studies of NTPDase3 will be relevant to understanding the structure and enzymatic mechanism of all the cell-surface members of this family (NTPDase1–3, 8), and that understanding these NTPDase enzymes will aid in modulating the many varied processes under purinergic signaling control. This review also integrates the site-directed mutagenesis results with a recent 3-D structural model for the extracellular portion of NTPDases that helps explain the importance of the apyrase conserved regions (ACRs) of the NTPDases. Utilizing this model and published work from Dr Guidotti’s laboratory concerning the importance and characteristics of the two transmembrane helices and their movements in response to substrate, we present a speculative cartoon model of the enzymatic mechanism of the membrane-bound NTPDases that integrates movements of the extracellular region required for catalysis with movements of the N- and C-terminal transmembrane helices that are important for control and modulation of enzyme activity.

[发布日期]  [发布机构] 
[效力级别]  [学科分类] 分子生物学,细胞生物学和基因
[关键词] site-directed mutagenesis [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文