Adenosine A2B receptors play an important role in bone homeostasis
[摘要] Bone homeostasis is a finely regulated mechanism involving different molecular pathways including adenosine signaling. The aim of this study is to determine the bone phenotype of adenosine A2B receptor knockout (A2BRKO) mice and to measure their ability to form new bone. Moreover, we analyzed the functionality of osteoclasts and osteoblasts from A2BRKO mice. Microcomputed tomography (μCT) analysis revealed a decrease of bone substance, bone mineral density, and trabecular number in A2BRKO mice compared to the WT mice at the same age. We measured the new bone formation by injecting fluorescent markers: it was reduced in femur and tibia of A2BRKO mice compare to the WT. A2BRKO young mice have fewer osteoblasts and an increase of osteoclasts was measured in the hind limbs of young and adult mice. A2BRKO osteoclasts are also more active in vitro, showing an increase of pit formation in dentin discs. Surprisingly in mature osteoblasts from A2BRKO mice, we measured an increase of calcified matrix production, collagen deposition, and alkaline phosphatase activity. These results demonstrate that A2BR on osteoblasts and osteoclasts regulate bone homeostasis.
[发布日期] [发布机构]
[效力级别] [学科分类] 分子生物学,细胞生物学和基因
[关键词] A2BRKO mice [时效性]