On the Local Artin Conductor $mathfrak{f}$ Artin (ðœ’) of a Character 𜒠of Gal(ð¸/ð¾) - II: Main Results for the Metabelian Case
[摘要] This paper which is a continuation of [2], is essentially expository in nature, although some new results are presented. Let ð¾ be a local field with finite residue class field $k_K$. We first define (cf. Definition 2.4) the conductor $mathfrak{f}(E/K)$ of an arbitrary finite Galois extension ð¸/ð¾ in the sense of non-abelian local class field theory as$$mathfrak{f}(E/K)=mathfrak{p}_K^{[[n_G]]+1},$$where $n_G$ is the break in the upper ramification filtration of $G = mathrm{Gal}(E/K)$ defined by $G^{n_G} ≠G^{n_G+ð›¿} = 1, forall𛿠in mathbb{R}_{gneq 0}$. Next, we study the basic properties of the ideal $mathfrak{f}(E/K)$ in $O_K$ in case $E/K$ is a metabelian extension utilizing Koch–de Shalit metabelian local class field theory (cf. [8]).After reviewing the Artin character $a_G:G → mathbb{C}$ of $G:=mathrm{Gal}(E/K)$ and Artin representations $A_G:G → GL(V)$ corresponding to $a_G:G → mathbb{C}$, we prove that (Proposition 3.2 and Corollary 3.5)$$mathfrak{f}mathrm{Artin}(ðœ’_Ï)=mathfrak{p}_K^{dim_mathbb{C}(V)[n_{G/ker(Ï)}+1]},$$where ðœ’Ï : $G → mathbb{C}$ is the character associated to an irreducible representation $Ï : G → GL(V)$ of $G (ext{over} mathbb{C})$. The first main result (Theorem 1.2) of the paper states that, if in particular, $Ï : G → GL(V)$ is an irreducible representation of $G (ext{over} mathbb{C})$ with metabelian image, then$$mathfrak{f}mathrm{Artin}(ðœ’_Ï)=mathfrak{p}_K^{[E^{ker(Ï)^ullet}:K](n_{G/ker(Ï)}+1)},$$where $mathrm{Gal}(E^{ker(Ï)}/E^{ker(Ï)^ullet})$ is any maximal abelian normal subgroup of $mathrm{Gal}(E^{ker(Ï)}/K)$ containing $mathrm{Gal}(E^{ker(Ï)}/K)'$, and the break $n_{G/ker(Ï)}$ in the upper ramification filtration of $G/ker(Ï)$ can be computed and located by metabelian local class field theory. The proof utilizes Basmaji's theory on the structure of irreducible faithful representations of finite metabelian groups (cf. [1]) and on metabelian local class field theory (cf. [8]).We then discuss the application of Theorem 1.2 on a problem posed by Weil on the construction of a `natural' $A_G$ of ðº over $mathbb{C}$ (Problem 1.3). More precisely, we prove in Theorem 1.4 that if ð¸/ð¾ is a metabelian extension with Galois group ðº, thenegin{align*}A_Gsimeq & sumlimits_N[(E^N)^ullet :K](n_{G/N}+1)\ & ×sumlimits_{[ðœ”]siminðœˆ_N}mathrm{Ind}_{ðœ‹_N^{-1}((G/N)^ullet)}^Gleft(ðœ”circðœ‹_N|_{ðœ‹_N^{-1}((G/N)^ullet)}ight),end{align*}where ð‘ runs over all normal subgroups of ðº, and for such an $N, ðœˆ_N$ denotes the collection of all ∼-equivalence classes $[ðœ”]_sim$, where `∼' denotes the equivalence relation on the set of all representations $𜔠:(G/N)^ullet→mathbb{C}^×$ satisfying the conditions$$mathrm{Inert}(ðœ”)={ð›¿in G/N :ðœ”_ð›¿=ðœ”}=(G/N)^ullet$$and$$igcaplimits_𛿠ker(ðœ”_ð›¿)=langle 1_{G/N}angle,$$where 𛿠runs over $mathcal{R}((G/N)^ulletackslash(G/N))$, a fixed given complete system of representatives of $(G/N)^ulletackslash(G/N)$, by declaring that $ðœ”_1 sim ðœ”_2$ if and only if ðœ”1 = ðœ”2,𛿠for some $𛿠in mathcal{R}((G/N)^ulletackslash(G/N))$.Finally, we conclude our paper with certain remarks on Problem 1.1 and Problem 1.3.
[发布日期] [发布机构]
[效力级别] [学科分类] 数学(综合)
[关键词] Local fields;higher-ramification groups;local Artin conductor;metabelian local class field theory;non-abelian local class field theory;local Langlands correspondence for $GL(n)$. [时效性]