已收录 273081 条政策
 政策提纲
  • 暂无提纲
Acoustically-Responsive Scaffolds: Control of Growth Factor Release for Tissue Regeneration Using Ultrasound
[摘要] Administration of exogenous growth factors (GFs) is a proposed method of stimulating tissue regeneration. Conventional administration routes, such as at-site or systemic injections, have yielded problems with efficacy and/or safety, thus hindering the translation of GF-based regenerative techniques. Hydrogel scaffolds are commonly used as biocompatible delivery vehicles for GFs. Yet hydrogels do not afford spatial or temporal control of GF release - two critical parameters for tissue regeneration. Controlled delivery of GFs is critical for angiogenesis, which is a crucial process in tissue engineering that provides oxygen and nutrients to cells within an implanted hydrogel scaffold. Angiogenesis requires multiple GFs that are presented with distinct spatial and temporal profiles. Thus, controlled release of GFs with spatiotemporal modulation would significantly improve tissue regeneration by recapitulating endogenous GF presentation. In order to achieve this goal, we have developed acoustically-responsive scaffolds (ARSs), which are fibrin hydrogels doped with sonosensitive perfluorocarbon (PFC) emulsions capable of encapsulating various payloads. Focused, mega-Hertz range, ultrasound (US) can modulate the release of a payload non-invasively and in an on-demand manner from ARSs via physical mechanisms termed acoustic droplet vaporization (ADV) and inertial cavitation (IC). This work presents the relationship between the ADV/IC thresholds and various US and hydrogel parameters. These physical mechanisms were used for the controlled release of fluorescent dextran in vitro and in vivo to determine the ARS and US parameters that yielded optimal payload release. The optimal ARS and US parameters were used to demonstrate the controlled release of basic fibroblast growth factor from an in vivo subcutaneous implant model - leading to enhanced angiogenesis and perfusion. Additionally, different acoustic parameters and PFCs were tested and optimized to demonstrate the controlled release of two encapsulated payloads within an ARS. Overall, ARSs are a promising platform for GF delivery in tissue regeneration applications.
[发布日期]  [发布机构] University of Michigan
[效力级别] therapeutic ultrasound applications [学科分类] 
[关键词] tissue engineering applications;therapeutic ultrasound applications;regenerative medicine;controlled release of growth factors;angiogenesis;Biomedical Engineering;Materials Science and Engineering;Medicine (General);Physics;Engineering;Health Sciences;Science;Applied Physics [时效性] 
   浏览次数:36      统一登录查看全文      激活码登录查看全文