已收录 272941 条政策
 政策提纲
  • 暂无提纲
Noncrossing partitions and representations of quivers
[摘要] AbstractWe situate the noncrossing partitions associated with a finite Coxeter group within the context of the representation theory of quivers. We describe Reading’s bijection between noncrossing partitions and clusters in this context, and show that it extends to the extended Dynkin case. Our setup also yields a new proof that the noncrossing partitions associated with a finite Coxeter group form a lattice. We also prove some new results within the theory of quiver representations. We show that the finitely generated, exact abelian, and extension-closed subcategories of the representations of a quiver Q without oriented cycles are in natural bijection with the cluster tilting objects in the associated cluster category. We also show that these subcategories are exactly the finitely generated categories that can be obtained as the semistable objects with respect to some stability condition.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 数学(综合)
[关键词]  [时效性] 
   浏览次数:10      统一登录查看全文      激活码登录查看全文