已收录 273079 条政策
 政策提纲
  • 暂无提纲
green's canonical syzygy conjecture for generic curves of odd genus
[摘要] we prove in this paper the green conjecture for generic curves of odd genus. that is, we prove the vanishing $k_{k,1}(x,k_x)=0$ for x a generic curve of genus $2k+1$. this completes our previous work, where the green conjecture for generic curves of genus g with fixed gonality d was proved in the range $dgeq g/3$, with the possible exception of the generic curves of odd genus. the case of generic curves of odd genus was considered as especially important, since hirschowitz and ramanan proved that if the conjecture is true for the generic curve of odd genus, then the locus of jumping syzygies is exactly the locus of exceptional gonality, as predicted by green's conjecture. thus, our result combined with the hirschowitz–ramanan result is a strong confirmation of green's conjecture.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 数学(综合)
[关键词]  [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文