已收录 273170 条政策
 政策提纲
  • 暂无提纲
Role of Shape in the Self-Assembly of Anisotropic Colloids.
[摘要] Self-assembly is the process of spontaneous organization of a set of interacting components. We examine how particle shape drives the self-assembly of colloids in three different systems. When particles interact only via their shape, entropic crystallization can occur; we discuss a design strategy using the Voronoi tesslelation to create ;;Voronoi particles,” (VP) which are hardparticles in the shape of Voronoi cells of their target structure. Although VP stabilize their target structure in the limit of infinite pressure, the self-assembly of the same structure at moderate pressure is not guaranteed. We find that more symmetric crystals are often preferred due to entropic contributions of several kBT from configurational degeneracies. We characterize the assembly of VP in terms of their symmetries and the complexities of the target structure and demonstrate how controlling the degeneracies through modifying shape and field-directed assembly can improve the assembly propensity. With the addition of non-adsorbing, polymers, hard colloids experience an attraction dependent on polymer concentration, the form of which is dictated by the colloid shape; we study a system of oblate, spheroidal colloids that self-assemble thread-like clusters.In both simulation and experiment the colloids condense into disordered droplets at low polymer concentrations; at higher concentrations we observe kinetic arrest into primarily linear clusters of aligned colloids. We show that the mechanical stabilty of these low-valence structures results from the anisotropic particle shape. Particle surfaces can be patterned with metal coatings, introducing enthalpic attraction between particles; we study a system of prolate spheroidal colloids, half-coated in gold. We show with experiments and computer simulations that Janus ellipsoids can self-assemble into self-limiting one-dimensional fibers with shape-memory properties, and that the fibrillar assemblies can be actuated on application of an external alternating-current electric field. Actuation of the fibers occurs through a sliding mechanism (allowed by the curved ellipsoidal surface) that permits the reversible elongation of the Janus-ellipsoid chains by ~36%.In each case, we find shape plays a critical role. By understanding and isolating its impact, we enhance shape;;s utility as a parameter for the design of self-assembling colloids.
[发布日期]  [发布机构] University of Michigan
[效力级别] Colloids [学科分类] 
[关键词] Self-assembly;Colloids;Soft-Matter;Physics;Science;Physics [时效性] 
   浏览次数:36      统一登录查看全文      激活码登录查看全文