Thin-Film PZT Scanning Micro-actuators for Vertical Cross-sectional Imaging in Endomicroscopy
[摘要] The advancement of optics and the development of microelectromechanical systems (MEMS) based scanners has enabled powerful optical imaging techniques that can perform optical sectioning with high resolution and contrast, large field of view, and long working distance to be realized in endoscope-compatible form factors. Optical endomicroscopes based on these imaging techniques can be used to obtain in vivo vertical cross-sectional images of dysplastic tissues in the hollow organs before they progress to mucosal diseases such as colorectal cancer. However, existing endomicroscopic systems that use imaging modalities compatible with the use of fluorescent biomarkers are not capable of deep vertical sectioning in real time. This work proposes a unique MEMS-based scanning mechanism to be incorporated into endoscopic microscopes for real-time in vivo deep into-tissue scanning for early cancer detection.For this task, a class of novel multi-axis micro-scanners based on thin-film lead-zirconate-titanate (PZT) has been developed. Leveraging the large piezoelectric strain coefficient of PZT, the prototypes have demonstrated more than 400 μm of out-of-plane displacement with bandwidths on the order of 100-200 Hz in only a 3.2 mm-by-3.2 mm footprint, which meets the requirements for this application. The scanners have a central rectangular-shaped reflector, whose corners are supported by four symmetric PZT bending legs that generate vertical translation. This design gives the reflector a three-axis motion. The challenges to fabricate high performance piezoelectric actuators are discussed with device failure mechanisms observed during the fabrication of the 1st generation scanners. Improved fabrication steps are presented that solve the issues with the 1st generation devices and enhance the robustness of the scanners for instrument integration. Remaining non-ideal fabrication outcomes cause MEMS devices to produce unwanted motions, which can degrade imaging quality. To overcome this problem, a method to drive MEMS actuators having multiple vibration modes with close frequencies to produce a desired motion pattern with a single input is presented, and was used to generate a pure vertical motion for imaging. Two-photon based vertical cross-sectional images of mouse colon was obtained in real time for the first time using a thin-film piezoelectric microscanner. To understand the effects of fabrication non-idealities on the device behavior and produce more robust scanner performance, analytical models that describes large vertical and rotational motions including multi-axis coupling were developed. A static model that was initially developed for design optimization was calibrated, along with a transient model, using experimental data to incorporate the effects of dimensional variations and residual stress. This models can be used with future integrated sensors and feedback controllers for more precise and robust motion of the scanner. This calibration technique can be useful in developing analytic models for MEMS devices subject to fabrication uncertainty. In addition, nonlinear dynamic behavior due to large vertical stroke in the presence of fabrication non-idealities is captured by linearizing an expanded dynamic model about different static positions obtained by numerically solving the expanded nonlinear model.
[发布日期] [发布机构] University of Michigan
[效力级别] Science [学科分类]
[关键词] piezoelectric microactuator for vertical cross-sectional imaging in endomicroscopy;Science;Mechanical Engineering [时效性]