Speed discrimination in the far monocular periphery: A relative advantage for interocular comparisons consistent with self-motion
[摘要] Some animals with lateral eyes (such as bees) control their navigation through the 3D world using velocity differences between the two eyes. Other animals with frontal eyes (such as primates, including humans) can perceive 3D motion based on the different velocities that a moving object projects upon the two retinae. Although one type of 3D motion perception involves a comparison between velocities from vastly different (monocular) portions of the visual field, and the other involves a comparison within overlapping (binocular) portions of the visual field, both compare velocities across the two eyes. Here we asked whether human interocular velocity comparisons, typically studied in the context of binocularly overlapping vision, operate in the far lateral (and hence, monocular) periphery and, if so, whether these comparisons were accordant with conventional interocular motion processing. We found that speed discrimination was indeed better between the two eyes' monocular visual fields, as compared to within a single eye's (monocular) visual field, but only when the velocities were consistent with commonly encountered motion. This intriguing finding suggests that mechanisms sensitive to relative motion information on opposite sides of an animal may have been retained, or at some point independently achieved, as the eyes became frontal in some animals.
[发布日期] [发布机构]
[效力级别] [学科分类] 眼科学
[关键词] Apiculture;Profitability Index;Payback Method [时效性]