已收录 271055 条政策
 政策提纲
  • 暂无提纲
Modelling electricity demand in South Africa
[摘要] English: Peak electricity demand is an energy policy concern for all countries throughout the world, causing blackouts and increasing electricity tariffs for consumers. This calls for load curtailment strategies to either redistribute or reduce electricity demand during peak periods. This thesis attempts to address this problem by providing relevant information through a frequentist and Bayesian modelling framework for daily peak electricity demand using South African data. The thesis is divided into two parts. The first part deals with modelling of short term daily peak electricity demand. This is done through the investigation of important drivers of electricity demand using (i) piecewise linear regression models, (ii) a multivariate adaptive regression splines (MARS) modelling approach, (iii) a regression with seasonal autoregressive integrated moving average (Reg-SARIMA) model (iv) a Reg-SARIMA model with generalized autoregressive conditional heteroskedastic errors (Reg-SARIMA-GARCH). The second part of the thesis explores the use of extreme value theory in modelling winter peaks, extreme daily positive changes in hourly peak electricity demand and same day of the week increases in peak electricity demand. This is done through fitting the generalized Pareto, generalized single Pareto and the generalized extreme value distributions. One of the major contributions of this thesis is quantification of the amount of electricity which should be shifted to off peak hours. This is achieved through accurate assessment of the level and frequency of future extreme load forecasts. This modelling approach provides a policy framework for load curtailment and determination of the number of critical peak days for power utility companies. This has not been done for electricity demand in the context of South Africa to the best of our knowledge. The thesis further extends the autoregressive moving average-exponential generalized autoregressive conditional heteroskedasticity model to an autoregressive moving average exponential generalized autoregressive conditional heteroskedasticity-generalized single Pareto distribution. The benefit of this hybrid model is in risk modelling of under and over demand predictions of peak electricity demand. Some of the key findings of this thesis are (i) peak electricity demand is influenced by the tails of probability distributions as well as by means or averages, (ii) electricity demand in South Africa rises significantly for average temperature values below 180C and rises slightly for average temperature values above 220C and (iii) modelling under and over demand electricity forecasts provides a basis for risk assessment and quantification of such risk associated with forecasting uncertainty including demand variability.
[发布日期]  [发布机构] University of the Free State
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文