已收录 273170 条政策
 政策提纲
  • 暂无提纲
ADH2 regulation in the yeast Saccharomyces cerevisiae
[摘要] English: The aim of this study was to investigate the ability of ethanol to repress the expression of ADH2 in the genome of Saccharomyces cerevisiae. To achieve this, an expression cassette (ADH2::LacZ) using LacZ as a reporter gene was constructed using the YIp356R shuttle vector. A 1000 bp up and downstream region, flanking the open reading frame of ADH2, was fused to the 5'-end and 3'-end of the LacZ gene in the YIp356R shuttle vector. Numerous attempts were made to transform the expression cassette (ADH2::LacZ) into S. cerevisiae (strain W303) containing a deleted ADH2 (adh2Δ::URA3), to displace the deletion cassette through homologous recombination, thereby placing ADH2::LacZ in the place of the ADH2 in genome of S. cerevisiae. This was unfortunately not successful and it was decided to use an alternative approach. In this case the expression cassette was cloned into the integrative vector YIplac211 and transformed into S. cerevisiae. For initial confirmation, the yeast transformants were grown on selective plates containing X-gal, which allows for the detection of β-galactosidase activity through the production of blue coloured colonies. The detection of the blue colour confirmed that the expression cassette was successfully constructed and integrated into the genome.Two randomly selected transformants were cultivated on 20 g glucose l-1 as sole carbon source, to study glucose repression and on three different ethanol concentrations to study the effect of ethanol on the expression of ADH2. Selection was maintained by growing the yeast in a URA�?chemically defined media (pH 5.5) at 30ºC. Samples were taken at appropriate intervals to perform β-galactosidase assay, assess utilization of substrate (ethanol and glucose), ethanol formation and biomass determination.During growth on 20 g glucose l-1 the production of β-galactosidase was apparent only when glucose concentrations were very low (2.3 g l-1), indicating that glucose levels have to decrease to a critical level before ADH2 expression can resume. The highest final biomass was produced during growth on 20 g glucose l-1. During growth on the three different ethanol concentrations the highest β-galactosidase maximum specific activity was obtained during growth on 20 g ethanol l-1 (3 643 U mg-1) and the lowest during growth on 5 g ethanol l-1 (2 533 U mg-1). Although the maximum specific activity obtained during growth on 30 g ethanol l-1 were higher than that obtained during growth on 5 g l-1, the production rate was the lowest (93 U mg-1h-1) during growth on 30 g ethanol l-1, suggesting that 30 g ethanol l-1 concentration has negative effect on the expression of ADH2. However this slow production might have been due to the slow growth during this cultivation and not due to ethanol repression. The possible repression of ADH2 is further disputed by the high β-galactosidase production on 30 g ethanol l-1.
[发布日期]  [发布机构] University of the Free State
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文