For reconstruction or repair of damaged tissues, an artificially regulated switch from proliferation to differentiation would be of great advantage. To achieve conditional myogenesis, we expressed MyoD in mouse C3H 10T1/2 fibroblastic cells, using a gene regulation system based on the synthetic steroid RU 486. By stable co-transfection of a plasmid construct with the RU 486 dependent activator and an integrating inducible MyoD construct, a cell clone, designated 10T-RM, was obtained in which MyoD expression was stringently controlled by RU 486. 12 h after addition of 10 nM RU 486 to 10T-RM cells, saturation levels of MyoD mRNA were observed and ≥2 days later, mRNA for embryonal myosin heavy chain (MyHCemb) was abundant and mononucleated cells fused into myotubes.