Inhibition of thrombin by heparin cofactor II (HCII) is accelerated 1000-fold by heparin or dermatan sulfate. To investigate the contribution of basic residues of the A helix of HCII to this activation, we constructed amino acid substitutions (K101Q, R103L, and R106L) by site-directed mutagenesis. K101Q greatly reduced heparin cofactor activity and required a more than 10-fold higher concentration of dermatan sulfate to accelerate thrombin inhibition compared with wild-type recombinant HCII. Thrombin inhibition by R106L was not significantly stimulated by dermatan sulfate. These results provide evidence that basic residues of the A helix of HCII (Lys101 and Arg106) are necessary for heparin- or dermatan sulfate-accelerated thrombin inhibition.