已收录 272976 条政策
 政策提纲
  • 暂无提纲
Improving methods for genotypic drug resistance testing in Mycobacterium tuberculosis
[摘要] ENGLISH ABSTRACT: An important next step to Tuberculosis control relies on the translation of basic science and modern diagnostic techniques into primary health care clinics. These assays must be rapid, inexpensive, interpretation of results must be easy and they must be simple so that a healthcare worker with limited training can perform the tests under safe conditions. This study consists of four aims. The first aim was to develop a methodology to sterilize sputum specimens for rapid TB diagnosis and drug resistance testing. Candidate bactericides were identified from the literature, and tested for their bactericidal activity in Mycobacterium tuberculosis. We identified ultraseptin®aktiv as a powerful bactericidal agent which sterilizes sputum specimens for subsequent safe handling prior to light emitting diode microscopy and it also provides a DNA template for PCR-based tests. An algorithm has been proposed for the processing of specimens and rapid diagnosis of TB and drug resistant TB while patients wait for results.Recently, the World Health Organization has endorsed the MTBDRplus test for diagnosis of TB and drug resistant TB. However genotypic tests may have more problems than anticipated. With the HIV pandemic, an increase of non-tuberculous mycobacteria has been reported. The sensitivity of genotypic tests in specimens with underlying non-tuberculous mycobacterial species therefore requires further evaluation. This study therefore also aimed at determining the reliability of the MTBDRplus assay for detection of drug resistant TB where non-tuberculous bacterial load is high. Clinically relevant non-tuberculous mycobacterium DNA and DNA from a multi-drug resistant TB isolate were obtained. Ratios of the different NTM with the MDR-TB DNA were made and subjected to the MTBDRplus assay. Known mix NTM and TB infected clinical isolates and sputum sediments were also evaluated for TB and drug resistance detection on the MTBDRplus assay. Under these conditions, this study provides evidence that the MTBDRplus test cannot reliably detect TB and drug resistance TB in specimens with underlying non-tuberculous mycobacteria.Thirdly, to evaluate the sensitivity of the MTBDRplus assay for detecting drug resistance in hetero-resistant isolates, ratios were made using purified DNA from an MDR and pan-susceptible TB isolate. The MTBDRplus assay was then performed on the different ratios. We report that the MTBDRplus assay can efficiently detect wild type DNA in genes associated with resistance during the early evolution of drug resistance. However, in the later stage during treatment when both the wild type and mutants are present, the detection limit for the mutant DNA was 1:55. Due to these results, the MTBDRplus assay should still be further improved or other tests should be developed to address these limitations.And finally to combat cross amplicon contamination during the final steps of genotypic detection with the MTBDRplus assay, a proof of concept for a patentable closed tube line probe device was proposed on the 4th aim. This device can be improved to enable automated drug resistance genotyping of multiple specimens.The results of this study highlight the need for a sensitive inexpensive point of care drug resistance test that does not require intensive training.
[发布日期]  [发布机构] Stellenbosch University
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文