A case study of source-sink relationships using shoot girdling and berry classification (Vitis vinifera L. cv. Cabernet Sauvignon)
[摘要] ENGLISH ABSTRACT: The relationships between leaf and fruit represent a fundamental concept in perennial plants. This concept allows to understand and to manage, with regard to farming, the balance of a vine, which is important in terms of fruit quality (i.e. fruit composition), mainly when it comes to producing wines of different categories and styles. The understanding of vine structure, physiology and vine functioning ultimately allows for appropriate recommendations to be given with regard to farming procedures. These include the adaptation of the canopy architecture to achieve a certain yield per vine, the determination of an appropriate fruit microclimate as well as the prediction of harvest dates. One of the central notions of vine balance involves the relationship between the source and the sink organs. The definition of source-sink relationships incorporates several concepts, including the ability of a source tissue to produce carbohydrates through photosynthesis, the transport of these carbohydrates to various plant organs-tissues via appropriate transport channels, and the assimilation and storage of the carbohydrates in the sink organs. In past years, a number of simple ratios have been created to incorporate the relationship between source and sink organs and thereby define vine balance in order to aid in practical management decisions (choice of a training system, irrigation, canopy manipulation etc.). However, vine functioning is very complex and cannot be defined accurately by simple, static ratios. More integrated and dynamic physiological indicators of vine balance and functioning are needed in order to understand the complex communication between organs and ultimately improve on farming practices. In order to achieve this, a better grasp of source-sink relationships, including the signalisation between organs and the functioning of the transport tissues is required.A two year experiment was proposed to study the interaction between source and sink organs using a combination of both primary shoot girdling methods and berry classification according to size. Girdling removes the bark and phloem tissue, thereby interrupting carbon import as well as water flow to the bunch to a certain degree. The aim of the study was to demonstrate the complexity of vine functioning by investigating the dynamics of berry sugar and water accumulation (used as physiological indicators) and the influence thereof on berry fresh mass evolution. Furthermore, the use of berry sugar loading was proposed as an improved physiological indicator of vine balance as it is directly linked to source and sink functioning. Sugar production and the dynamics of berry sugar accumulation rely on photosynthesis which in turn is dependent on stomatal conductance and therefore also incorporates the effects of external abiotic factors (temperature, light and water). It furthermore gives a direct indication of sink functioning as it shows the progressive accumulation of sugar throughout the ripening period and the possible consequences on berry volume evolution.A primary shoot which bore two bunches was used to represent a biological replicate. The lower bunches were girdled above and below in order to completely isolate them from any carbohydrate import. These bunches, along with the upper ungirdled bunches and two control bunches from another shoot were sampled. The berries from these bunches were classified according to diameter, thereby providing the unique opportunity to study berries of the same volume/size. Measurements were done to determine the fresh and dry masses of the sampled berries, as well as to analyse the concomitant sugar concentrations.It was found that girdling clearly had an effect on berry sugar dynamics and the method was improved in the second year of the trial. Girdling in interaction with berry classification according to diameter demonstrated that berries from the same size could have different sugar concentrations. It further showed that, to a certain degree, a relationship exists between the first rapid phase of sugar accumulation and the post véraison increase in berry fresh mass, until the plateau of fruit sugar accumulation, which generally occurs around a sugar concentration of 20 Brix. Additionally, and more importantly, it was found that vine functioning and the balance between the source and the sink organs may be controlled to a certain degree. There is a strong degree of compensation within a vine which results from signalling between and within organs. When taking the results of this study into consideration, it becomes clear that the classical ratios used to quantify the complex relationships between the fruit and the leaves may not be completely adequate to do so. The current way of looking at source-sink relationships and thereby determining whether a vine is balanced or not is over-simplified and there are numerous limitations involved in this approach. The vine is far more complex and various aspects must be taken into consideration before any claims can be made concerning source-sink relationships and consequently leaf to fruit balance.
[发布日期] [发布机构] Stellenbosch University
[效力级别] [学科分类]
[关键词] [时效性]