已收录 273218 条政策
 政策提纲
  • 暂无提纲
Authentication of Sauvignon blanc wine in terms of added flavourings
[摘要] ENGLISH ABSTRACT: The varietal character of Sauvignon blanc wine is mostly defined by the balance between tropical and green vegetative flavour nuances. Grape derived methoxypyrazines are the main aroma contributors towards green vegetative flavours. Methoxypyrazines are heat and light sensitive. Due to warm climatic conditions in South Africa, methoxypyrazine levels decrease during grape ripening. The addition of food flavourings to Sauvignon blanc wine, a practice known as spiking, has occurred in the past to improve the green character of the wines. Adding flavourings to wine and selling the wine as natural certified wine is illegal in South Africa. Currently, adulterated Sauvignon blanc wines are identified using gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) methods to quantify methoxypyrazines and compare levels to an established database. Although of high sensitivity, GC-MS and LCMS methods are costly and time consuming, therefore not optimal for routine screening of wines. Hence the need for the development of a fast and cost effective method for routine screening of large amounts of wines to identify adulteration. Small scale vinification practices were used to prepare experimental Sauvignon blanc wine. Flavourings were added to Sauvignon blanc grape juice before fermentation, during the preparation of experimental spiked wines. Control wines, containing no flavouring, were also prepared. Commercial wines were spiked after fermentation and bottling. Each wine was only spiked with a single flavouring. The flavourings added were the juice of homogenised fresh green peppers and commercially available flavourings for wine. The following commercial flavourings were used: green pepper, asparagus, grassy and tropical. The above mentioned wines were analyzed using Fourier transform infrared (FT-IR) spectroscopy, GC-MS, LC-MS and descriptive sensory analysis. The FT-IR techniques used were Fourier transform mid infrared (FT-MIR) transmission, FT-MIR attenuated reflection and Fourier transform near infrared (FT-NIR) reflection spectroscopy. The data was interpreted using the following multivariate statistical techniques: principal component analysis (PCA), partial least squares discrimination (PLS-D) and conformity testing. Multivariate models constructed from FT-MIR and FT-NIR data were able to discriminate between spiked and control wines. Sensory analysis results clearly showed differences between non-spiked wines and spiked wines with 3-isobutyl-2-methoxypyrazine concentrations 10 times higher than naturally occurring in wine. Differences between control and spiked wines with concentrations of 3-isobutyl-2-methoxypyrazine similar to concentrations naturally occurring in wines could not be detected to prove adulteration conducting sensory analysis. However, differences between control and spiked wines with levels of 3-isobutyl-2-methoxypyrazine similar to levels naturally occurring in wines could be detected using FT-IR data in conjunction with multivariate statistics. This study showed that, FT-IR spectroscopy in conjunction with multivariate statistical methods can be a possibility for the screening and identification of wines suspected of adulteration in terms of added flavourings. Descriptive sensory analysis also proved to be a potentially useful tool. However screening and training of potential panel members are time consuming.
[发布日期]  [发布机构] Stellenbosch University
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文