An investigation into the effect of climate change on eutrophication and surface water quality of Voelvlei Dam with an emphasis on algal growth
[摘要] ENGLISH ABSTRACT: The study of climate change and its effect on the eutrophication of surface waters is a current and critically important study for the well-being of the entire planet. Within the same emission scenario various probable climate change models outcomes are possible that affect the water quality of a body of water. Voëlvlei is an off-channel dam that supplies water to the city of Cape Town in the Western Cape Province of South Africa. Historically, it is a eutrophic dam and with climate change, its water quality is expected to worsen. Four statistically downscaled climate models are used to produce meteorological outputs that drive the hydrodynamic and water quality model. The times simulated were the present day (1971-1990), the intermediate future (2046-2065) and the distant future (2081-2100). The operating procedure was not expected to change for the dam and inflows and withdrawals were kept the same for each of the simulation periods. The water quality model CE-QUAL-W2 version 3.6 was used. The bathymetry was validated with measured data. The model was calibrated for temperature, phosphorus loading, ammonium, nitrite-nitrates and chlorophyll-a concentration. The model was used to predict a present day situation in the dam, which was the basis from which future changes would be assessed. The main driver for algal growth other than nutrients and light was water temperature, which was linked to air temperature. With climate change, the air temperature will raise and enhance algal growth. The limiting nutrient was phosphorus during the winter and the rest of the year nitrogen limits algal growth. In the present day, the dominant algal group was the green algae.With climate change an increase in the surface water temperature will increase evaporation and cause a decrease in the yield of the dam and further concentrates the algal nutrients. The surface phosphates concentration show increases in all months but especially in autumn. The total algal growth was increased annually and especially during autumn, signalling a seasonal shift and lengthening of the bloom season. The dominant algae however are still the green algae. There will be an increase in the annual concentration of diatoms. The green algae are present in the highest concentrations when compared to diatoms and cyanobacteria. The increase in its nutrients throughout the year as well as the increased water temperature allowed for unabated growth the entire year with peaks earlier in the year during autumn. Cyanobacteria are present at the surface for the entire year at significant concentrations but with intermediate and future climate change their concentrations does not change significantly. The result for cyanobacteria was inconclusive as the inter-variability between the climate models has the greatest variability for cyanobacteria, with 2 models showing an increased concentration and 2 a decreased concentration for intermediate and future time-period. For climate change, the water quality worsens especially during winter. With climate change water quality will worsen earlier in the year confirming a seasonal shift. The modelling of dissolved oxygen proved daunting as the results indicated supersaturation. The concentration of dissolved oxygen does not vary much as would be expected due to the warmer waters.
[发布日期] [发布机构] Stellenbosch University
[效力级别] [学科分类]
[关键词] [时效性]