Impact assessment of energy-efficient lighting interventions
[摘要] ENGLISH ABSTRACT: Energy-efficient (EE) lighting projects form a substantial percentage of Demand Side Management (DSM) initiatives. These largely entail the exchange of one lighting technology for another more energy-efficient lighting technology. The DSM process typically involves a proposal from an Energy Services Company (ESCO) to retrofit an existing lighting technology with another on the property of a third party, the client. For scoping purposes, ESCOs perform energy savings calculations based on information obtained from the datasheets of the relevant lighting technologies. Such datasheet specifications rarely incorporate the effects of supply voltage fluctuations on energy consumption, which can impact on the accuracy of the savings calculations. Furthermore, modern EE lighting technologies such as Compact Fluorescent lamps (CFLs) employ power electronic circuitry that can in principle give rise to Quality of Supply (QoS) problems such as harmonic distortion. The usage profiles of artificial light fittings targeted in DSM interventions represent another important factor in determining the savings impacts of such projects. There is currently limited information on methodologies for obtaining such usage profiles. In practice, the scoping and impact verification of EE lighting projects are conducted using project-specific applications and spreadsheets that are time-consuming and error-prone.In view of the above-mentioned considerations, this investigation aims to address the lack of voltage-dependent energy consumption data and QoS impacts by conducting a laboratory investigation for all relevant lighting technologies, namely incandescent lamps, CFLs, tubular fluorescent lamps and high intensity discharge lamps. Appropriate mathematical models for the voltage-dependent energy consumption characteristics of these light technologies are derived from the measurements. The supply current harmonic distortion associated with the various lamp types are investigated, particularly with regard to neutral current loading caused by zero-sequence harmonics. Methodologies for obtaining accurate and reliable light usage data using commercially available data loggers are reviewed. A database structure is subsequently designed and implemented to store the information relevant for impact assessment, including the mathematical models of energy consumption, supply voltage profiles and light usage profiles.Finally, an Integrated Software Program (ISP) is developed to implement a methodology for assessing the savings impacts of practical EE lighting projects, using the database as the main input source. The ISP is tested by implementing a real case study. It is shown that the ISP yields accurate results for the case study considered in the evaluation.
[发布日期] [发布机构] Stellenbosch University
[效力级别] [学科分类]
[关键词] [时效性]