Experimental evidence for sulphide magma percolation and evolution : relevant to the chromite bearing reefs of the Bushveld Complex
[摘要] ENGLISH ABSTRACT: Pt mineralization within the Bushveld Complex is strikingly focused on the chromitite reefs, despite these horizons being associated with low volumes of base metal sulphide relative to Pt grade. Partitioning of Pt (Dsil/sulp) from silicate magma into immiscible sulphide liquid appears unable to explain Pt concentrations in chromitite horizons, due to the mismatch that exists between very large R factor required and the relevant silicate rock volume. Consequently, in this experimental study we attempt to gain better insight into possible Pt grade enhancement processes that may occur with the Bushveld Complex (BC) sulphide magma. We investigate the wetting properties of sulphide melt relevant to chromite and silicate minerals, as this is a key parameter controlling sulphide liquid percolation through the cumulate pile. Additionally, we have investigated how fractionation of the sulphide liquid from mono-sulphide-solid-solution (Mss) crystals formed within the overlying melanorite might affect sulphide composition and Pt grades within the evolved sulphide melt. Two sets of experiments were conducted: Firstly, at 1 atm to investigate the phase relations between 900OC and 1150OC, within Pt-bearing sulphide magma relevant to the BC; Secondly, at 4 kbar, between 900OC to 1050OC, which investigated the downwards percolation of sulphide magma through several layers of silicate (melanorite) and chromitite. In addition, 1atm experiments were conducted within a chromite dominated chromite-sulphide mixture to test if interaction with chromite affects the sulphide system by ether adding or removing Fe2+. Primary observations are as follows: We found sulphide liquid to be extremely mobile, the median dihedral angles between sulphide melt and the minerals of chromitite and silicate layers are 11O and 33O respectively. This is far below the percolation threshold of 60O for natural geological systems. In silicate layers sulphide liquid forms vertical melt networks promoting percolation. In contrast, the extremely effective wetting of sulphide liquid in chromitites restricts sulphide percolation. Inter-granular capillary forces increase melt retention, thus chromitites serve as a reservoir for sulphide melt. Sulphide liquid preferentially leaches Fe2+ from chromite, increasing the Fe concentration of the sulphide liquid. The reacted chromite rims are enriched in spinel end-member. This addition of Fe2+ to the sulphide magma prompts crystallization Fe-rich Mss, decreasing the S-content of sulphide melt. This lowers Pt solubility and leads to the formation of Pt alloys within the chromitite layer. Eventually, Cu-rich sulphide melt escapes through the bottom of the chromitite layer.These observations appear directly applicable to the mineralized chromitite reefs of the Bushveld complex. We propose that sulphide magma, potentially injected from the mantle with new silicate magma injections, percolated through the silicate cumulate overlying the chromitite and crystallized a significant volume of Fe-Mss. Chromitite layers functioned as traps for percolating, evolved, Cu-, Ni- and Pt-rich sulphide liquids. This is supported by the common phenomenon that chromitites contain higher percentages of Ni, Cu and Pt relative to hanging wall silicate layers. When in contact with chromite, sulphide melt is forced to crystallize Mss as it leaches Fe2+ from the chromite, thereby further lowering the S-content of the melt. This results in precipitation, as Pt alloys, of a large proportion of the Pt dissolved in the sulphide melt. In combination, these processes explain why chromitite reefs in the Bushveld Complex have Pt/S ratios are up to an order of magnitude higher that adjacent melanorite layers.
[发布日期] [发布机构] Stellenbosch University
[效力级别] [学科分类]
[关键词] [时效性]