已收录 272976 条政策
 政策提纲
  • 暂无提纲
Investigating ligands of cardiac Myosin-Binding Protein C (cMyBPC) as potential regulators of contractility and modifiers of hypertrophy.
[摘要] ENGLISH ABSTRACT: The regulation of cardiac contractility is dependent on cooperative interaction between the thick and thin filaments, as well as their accessory proteins, within the cardiac sarcomere. Alteration in cardiac contractility due to a defective sarcomere typically results in cardiomyopathies, such as hypertrophic cardiomyopathy (HCM). One of the sarcomeric genes frequently mutated and which accounts for the second most common form of HCM encodes cardiac myosin binding protein C (cMyBPC), a thick filament accessory protein whose physiological function is poorly understood. However, studies have implicated cMyBPC in thick filament structure and function as well as in the regulation of contractility. The N-terminal region of cMyBPC houses the cMyBPC-motif, which contains three phosphorylation sites, between domains C1 and C2. The hierarchical phosphorylation of this motif, by first calcium/calmodulin kinase II (CamKII) and then by cyclic AMP-activated protein kinase (PKA), is cardinal in the role of cMyBPC in the regulation of cardiac contractility in response to ß-adrenergic stimulation. Moreover, phosphorylation of this motif is inversely correlated to cMyBPC proteolysis and has been shown to be cardioprotective. Thus, proteins that have an effect on cMyBPC function or turnover may also influence filament structure and hence affect contractility, which, in turn, affects the structure of the cardiac muscle.One such protein is the Copper metabolism MURR1-domain containing protein 4 (COMMD4), which was previously identified as a novel interactor of cMyBPC during a yeast two-hybrid (Y2H) library screen in our laboratory. COMMD4 binds specifically to the cMyBPC motif in a phosphorylation-dependent manner. The exact function of COMMD4 is unknown; however, it is a member of the COMM family of proteins that has been linked to copper metabolism as well as to the ubiquitin-proteasome pathway (UPS). Intriguingly, recent studies have shown that the UPS plays a role in cMyBPC-derived HCM, while dietary copper depletion is also known to cause cardiac hypertrophy. Based on these findings, COMMD4 was considered an interesting candidate regulator of sarcomeric function and contractility, and by extension, a candidate modifier of cardiac hypertrophy.Thus, the aim of the present study was two-fold. Firstly, COMMD4 was used as bait in a Y2H library screen to determine its distal ligands, with a view to further elucidate its function, particularly in the context of MyBPC functioning, and identified interactors were subjected to further in vitro and in vivo verification studies. Also, the phosphorylation-dependent nature of the interaction between COMMD4 and cMyBPC was further investigated using a domain/phosphorylation assay. Secondly, COMMD4 and its Y2H-identified putative interactors were assessed as possible modifiers of hypertrophy in a family-based association study, using three cohorts of South African HCM-families in which one of three founder mutations segregate.Six putative interactors, viz. cardiac actin (ACTC1), Down syndrome critical region 3 (DSCR3), enolase 1 (ENO1), F-box and leucine rich repeat protein 10 (FBXL10), legumain (LGMN) and sorting nexin3 (SNX3) were identified and confirmed as COMMD4 interactors using Y2H analyses, followed by in vitro and in vivo co-immunoprecipitation and 3D co-localisation assays. Moreover, as some COMMD protein family members and the newly-identified interactors of COMMD4 have previously been linked to the UPS, the functional effect of siRNA-mediated knockdown of COMMD4 on cMyBPC turnover was also investigated. Data revealed accumulation of cMyBPC in the endosomes upon COMMD4 knockdown, suggesting a functional role for COMMD4 in the turnover of cMyBPC. In addition, association analysis revealed strong evidence of association between various single nucleotide polymorphisms (SNPs) in SNX3 and a number of hypertrophy traits, thus suggesting a role for SNX3 as a candidate modifier of hypertrophy in HCM. No evidence of association was observed for any of the genes encoding the other COMMD4 interactors implicated in protein turnover.The present study demonstrates that COMMD4, a little understood member of the COMM family of proteins, binds to the cMyBPC motif of cMyBPC in a phosphorylation-dependent manner. Furthermore, based on the functions of its protein interactions, we hypothesise that COMMD4 plays a role in protein trafficking and turnover. More specifically, COMMD4 seems to help to facilitate formation of protein complexes with the Skp1-Cul1-Fbxl (SCF) E3 ubiquitin ligase and probably helps to stabilise the target substrate for subsequent ubiquitin-conjugation. As COMMD4 seems to affect the protein turnover of cMyBPC and possibly other sarcomeric proteins, such as actin, these results establish a novel association between the sarcomere, HCM and the UPS. In addition, identification of SNX3 as a hypertrophy modifier will allow for the improved understanding of HCM patho-aetiology. SNX3 thus adds to the growing body of sarcomeric modifier genes, which, eventually, may improve risk profiling in HCM. Furthermore, as genetic modifiers appear sufficient to completely prevent disease expression in some HCM carriers, the identification of SNX3 may point to the protein turnover pathway as a potential new target for intervention.
[发布日期]  [发布机构] Stellenbosch University
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文