已收录 272612 条政策
 政策提纲
  • 暂无提纲
Identification of the genes encoding enzymes involved in the synthesis of the biopolymer paramylon from Euglena gracilis
[摘要] ENGLISH ABSTRACT: Recent advances in medical pharmacology have identified the immune-potentiating effects of β-1,3-glucans on mammalian immune systems. Extensive research has identified and described the mechanisms of action and receptor binding specificity of different β-1,3-glucans as well as their structural and functional relationships. Molecular mass, solubility, structural order, degree of branching as well as chemical modification all determine the effectiveness of the β-1,3-glucan immune-modulating activities, which typically include; macrophage activation, antibody adjuvant activities, reduction of LDL-cholesterol, leukocyte mitogenic activities, cytokine and chemokine production as well as antiviral and antitumor activities. Currently β-1,3-glucans have been sold commercially under the name β-glucan, mostly in the form of Betafectin, a genetically modified yeast derived β-1,3-glucan.Recent studies of different β-1,3-glucans have identified the pharmacological activities of paramylon, a Euglena derived β-1,3-glucan. Although paramylon has relatively low immune-stimulating activities, chemical modification of the paramylon granule increased immune-potentiation with specific antimicrobial and anti-HIV activities. Due to these specific immune-potentiating activities, paramylon is novel in terms of both structure as well as functional activity.In terms of biotechnological application, paramylon is greatly favoured as it is synthesized as an insoluble membrane bound granule in the cytosol of Euglena where most plant and fungal β-1,3-glucan synthases are cell membrane bound highly regulated multifunctional complexes, synthesizing β-1,3-glucan as cell wall components. Due to the novel granular nature of paramylon, expression in other systems with genetic modification could potentially further increase immuno-potentiating activities.In this study, different approaches were attempted in order to identify the genes involved in paramylon synthesis including; constructing and screening a Euglena gracilis cDNA library, sequence analysis of the purified proteins as well as transcription analysis of the sequenced transcriptome and genome of E. gracilis. Putative candidates that encode subunits of the paramylon synthase complex have been identified.
[发布日期]  [发布机构] Stellenbosch University
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文