Attention-based perceptual learning does not affect access to awareness
[摘要] Visual information that is relevant for an observer gains prioritized access to awareness (Gayet, Van der Stigchel, & Paffen, 2014 ). Here we investigate whether information that was relevant for an extended duration is prioritized for access to awareness when it is no longer relevant. We applied a perceptual-learning paradigm, in which observers were trained for 3 days on a speed-discrimination task. This task used a stimulus consisting of two motion directions, of which one was relevant to the task and one irrelevant. Before and after training, we applied a motion-coherence task to validate whether perceptual learning took place, and a breaking continuous flash-suppression (b-CFS) paradigm to assess how training affected access to awareness. The results reveal that motion-coherence thresholds for the task-relevant motion direction selectively decreased after compared to before training, revealing that task-relevant perceptual learning took place. The results of the b-CFS task, however, reveal that access to awareness was not affected by task-relevant learning: Instead, detection times for motion undergoing CFS decreased, irrespective of its direction, after compared to before training. A follow-up experiment showed that the time to detect visual motion also decreased after 3 days without training, revealing that perceptual learning did not cause the general decrease in detection times. The latter is in line with results by Mastropasqua, Tse, and Turatto ( 2015 ) and has important consequences for studies applying b-CFS to assess access to awareness: Studies that intend to apply measurements involving b-CFS on different testing days should consider that breakthrough times will dramatically decrease from pre- to postmeasurement.
[发布日期] [发布机构]
[效力级别] [学科分类] 眼科学
[关键词] [时效性]