已收录 273227 条政策
 政策提纲
  • 暂无提纲
SEMANTIC SEGMENTATION OF INDOOR 3D POINT CLOUD WITH SLENET
[摘要] With the rapid development of new indoor sensors and acquisition techniques, the amount of indoor three dimensional (3D) point cloud models was significantly increased. However, these massive “blind” point clouds are difficult to satisfy the demand of many location-based indoor applications and GIS analysis. The robust semantic segmentation of 3D point clouds remains a challenge. In this paper, a segmentation with layout estimation network (SLENet)-based 2D–3D semantic transfer method is proposed for robust segmentation of image-based indoor 3D point clouds. Firstly, a SLENet is devised to simultaneously achieve the semantic labels and indoor spatial layout estimation from 2D images. A pixel labeling pool is then constructed to incorporate the visual graphical model to realize the efficient 2D–3D semantic transfer for 3D point clouds, which avoids the time-consuming pixel-wise label transfer and the reprojection error. Finally, a 3D-contextual refinement, which explores the extra-image consistency with 3D constraints is developed to suppress the labeling contradiction caused by multi-superpixel aggregation. The experiments were conducted on an open dataset (NYUDv2 indoor dataset) and a local dataset. In comparison with the state-of-the-art methods in terms of 2D semantic segmentation, SLENet can both learn discriminative enough features for inter-class segmentation while preserving clear boundaries for intra-class segmentation. Based on the excellence of SLENet, the final 3D semantic segmentation tested on the point cloud created from the local image dataset can reach a total accuracy of 89.97%, with the object semantics and indoor structural information both expressed.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 地球科学(综合)
[关键词] Indoor Mapping;2D-3D Semantic Label Propagation;Semantic Segmentation;3D Point Cloud [时效性] 
   浏览次数:68      统一登录查看全文      激活码登录查看全文