Querying Log Data with Metric Temporal Logic
[摘要] We propose a novel framework for ontology-based access to temporal log data using a datalog extension datalogMTL of the Horn fragment of the metric temporal logic MTL. We show that datalogMTL is EXPSPACE-complete even with punctual intervals, in which case full MTL is known to be undecidable. We also prove that nonrecursive datalogMTL is PSPACE-complete for combined complexity and in AC0 for data complexity. We demonstrate by two real-world use cases that nonrecursive datalogMTL programs can express complex temporal concepts from typical user queries and thereby facilitate access to temporal log data. Our experiments with Siemens turbine data and MesoWest weather data show that datalogMTL ontology-mediated queries are efficient and scale on large datasets.
[发布日期] [发布机构]
[效力级别] [学科分类] 人工智能
[关键词] [时效性]