Assessing the impact of different liquid water permittivity models on the fit between model and observations
[摘要] Permittivity models for microwave frequencies of liquid water below 0 ∘ C (supercooled liquid water) are poorly constrained due to limited laboratory experiments and observations, especially for high microwave frequencies. This uncertainty translates directly into errors in retrieved liquid water paths of up to 80 %. This study investigates the effect of different liquid water permittivity models on simulated brightness temperatures by using the all-sky assimilation framework of the Integrated Forecast System. Here, a model configuration with an improved representation of supercooled liquid water has been used. The comparison of five different permittivity models with the current one shows a small mean reduction in simulated brightness temperatures of at most 0.15 K at 92 GHz on a global monthly scale. During austral winter, differences occur more prominently in the storm tracks of the Southern Hemisphere and in the intertropical convergence zone with values of around 0.5 to 1.5 K. Compared to the default Liebe ( 1989 ) approach, the permittivity models of Stogryn et al. ( 1995 ) , Rosenkranz ( 2015 ) and Turner et al. ( 2016 ) all improve fits between observations and all-sky brightness temperatures simulated by the Integrated Forecast System. In cycling data assimilation these newer models also give small improvements in short-range humidity forecasts when measured against independent observations. Of the three best-performing models, the Stogryn et al. ( 1995 ) model is not quite as beneficial as the other two, except at 183 GHz. At this frequency, Rosenkranz ( 2015 ) and Turner et al. ( 2016 ) look worse because they expose a scattering-related forward model bias in frontal regions. Overall, Rosenkranz ( 2015 ) is favoured due to its validity up to 1 THz, which will support future submillimetre missions.
[发布日期] [发布机构]
[效力级别] [学科分类] 几何与拓扑
[关键词] [时效性]