已收录 273693 条政策
 政策提纲
  • 暂无提纲
Computational Fluid Dynamics in Unruptured Intracranial Aneurysms
[摘要] Introduction and Objective: Intracranial aneurysm, also known as brain aneurysm, is a cerebrovascular disorder in which weakness in the wall of a cerebral artery causes a localized dilation or ballooning of the blood vessel. There is no objective way, device or tools, of predicting rupture of aneurysm so far. Computational fluid dynamics (CFDs) was proposed as a tool to identify the rupture risk. Purpose of study: To reveal the correlation of CFD findings with intraoperative microscopic findings and prove the relevance of CFDin the prediction of rupture risk and in the management of unruptured intracranial aneurysms. Subjects and Methods: A prospective cohort study was conducted inNeurosurgery department of Fujita Health University Banbuntane Hotokukai Hospital, Nagoya, Japanduring a 3‑month period in 2018,from January to March, Ten patientswere diagnosed unruptured intracranial aneurysms (UIA). In diagnosis computed tomography (CT) angiogram, CFD and digital subtraction angiogram were included. Intraoperatively microscopic examination of the aneurysm wall was carried out and images recorded. The correlation between microscopic dome morphology and CFD information was performed. Results: Nine cases were found intraoperatively to have a higher risk of rupture based on the thinning of the wall. One cases had an atherosclerotic wall. All cases had low wall shear stress (WSS). In 90 % of cases Low WSS was able to predict the potency rupture risk in the near future. Conclusions: This study of CFD and its correlation with intraoperativefindings of the aneurysm suggested that low WSS of the aneurysm wall is associated with thin wall aneurysm and hence increased risk of aneurysm rupture. Thus CFD can be used to predict the risk of rupture of unruptured aneurysm and for planning of its treatment.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 精神健康和精神病学
[关键词]  [时效性] 
   浏览次数:10      统一登录查看全文      激活码登录查看全文