Lapatinib decreases the ACTH production and proliferation of corticotroph tumor cells
[摘要] Cushing’s disease is almost always caused by hypersecretion of adrenocorticotropic hormone (ACTH) from a pituitary adenoma. A mutation in the deubiquitinase gene USP8 has been found in human ACTH-producing pituitary adenoma cells. This mutational hotspot hyperactivates USP8, rescuing epidermal growth factor receptor (EGFR) from lysosomal degradation and ensuring its sustained signaling in Cushing’s disease. An EGFR inhibitor would be an effective anti-tumor agent in EGFR-related tumors. We investigated the effect of a potent dual tyrosine kinase inhibitor, lapatinib, on ACTH production and cell proliferation in AtT-20 mouse corticotroph tumor cells. Lapatinib decreased proopiomelanocortin (Pomc) mRNA levels and ACTH levels in AtT-20 cells and also inhibited cell proliferation, induced apoptosis, and decreased pituitary tumor-transforming gene 1 (Pttg1), a hallmark of pituitary tumors, mRNA levels. KSN/Slc nude mice were subcutaneously inoculated with AtT-20 cells. After 1 week, the mice were randomized either to control or lapatinib groups. The inhibitor decreased the tumor weight of AtT-20 allografts in vivo versus control mice. Lapatinib also significantly decreased Pomc and Pttg1 mRNA levels in the tumor and plasma ACTH and corticosterone levels in vivo. Thus, lapatinib decreases the ACTH production and proliferation of corticotroph tumor cells. An EGFR-targeting therapy could be an important treatment for Cushing’s disease.
[发布日期] [发布机构]
[效力级别] [学科分类] 内分泌与代谢学
[关键词] Cushing’s disease;Adrenocorticotropic hormone;Proopiomelanocortin;Pituitary tumor;Treatment [时效性]