Parameter identification of unmanned marine vehicle manoeuvring model based on extended Kalman filter and support vector machine
[摘要] To predict the manoeuvrability of unmanned marine vehicle and improve its manoeuvrability, the parameters of the manoeuvring model of unmanned marine vehicle need to be obtained. Aiming at the inconvenience of obtaining model parameters under the traditional experimental method, this article studies the parameter identification of unmanned marine vehicleâs manoeuvring model based on extended Kalman filter and support vector machine. Firstly, the second-order nonlinear manoeuvring response model of unmanned marine vehicle is discretized by the difference method, and the corresponding data are collected by the manoeuvring motion simulation of the response model. Secondly, the discrete response model is transformed into an augmented state vector based on extended Kalman filter, and the optimal estimation of the state vector is calculated to identify the parameters. And then, the discrete response model is transformed into a support vector machine-based regression model, the collected data are processed and a set of support vectors are obtained to further identify the parameters of the response model. Finally, by comparing the simulation experimentsâ results from the original model and the identification model, the recognition results-based extended Kalman filter and support vector machine are analysed and some research results are obtained. The results of this article will provide a powerful reference for the design of unmanned marine vehicleâs motion control algorithm.
[发布日期] [发布机构]
[效力级别] [学科分类] 自动化工程
[关键词] Unmanned marine vehicle;parameter identification;manoeuvring model;extended Kalman filter;support vector machine [时效性]