Finite-time predictor line-of-sightâbased adaptive neural network path following for unmanned surface vessels with unknown dynamics and input saturation
[摘要] In the presence of unknown dynamics and input saturation, a finite-time predictor line-of-sightâbased adaptive neural network scheme is presented for the path following of unmanned surface vessels. The proposed scheme merges with the guidance and the control subsystem of unmanned surface vessels together. A finite-time predictorâbased line-of-sight guidance law is developed to ensure unmanned surface vessels effectively converging to and following the referenced path. Then, the path-following control laws are designed by combining neural network-based minimal learning parameter technique with backstepping method, where minimal learning parameter is applied to account for system nonparametric uncertainties. The key features of this scheme, first, the finite-time predictor errors are guaranteed; second, designed controllers are independent of the system model; and third, only required two parameters update online for each control law. The rigorous theory analysis verifies that all signals in the path-following guidance-control system are semi-globally uniformly ultimately bounded via Lyapunov stability theory. Simulation results illustrate the effectiveness and performance of the presented scheme.
[发布日期] [发布机构]
[效力级别] [学科分类] 自动化工程
[关键词] Unmanned surface vessels;path following;finite time;line-of-sight;minimal learning parameter;adaptive control [时效性]