A bifunctional platinum(II) antitumor agent that forms DNA adducts with affinity for the estrogen receptor
[摘要] A strategy is described for the re-design of DNA damaging platinum(II) complexes to afford elevated toxicity towards cancer cells expressing the estrogen receptor (ER). Two platinum-based toxicants are described in which a DNA damaging warhead, [Pt(en)Cl[subscript 2]] (en, ethylenediamine), is tethered to either of two functional groups. The first agent, [6-(2-amino-ethylamino)-hexyl]-carbamic acid 2-[6-(7α-estra-1,3,5,(10)-triene)-hexylamino]-ethyl ester platinum(II) dichloride ((Est-en)PtCl[subscript 2]), terminates in a ligand for the ER. The second agent is a control compound lacking the steroid; this compound, N-[6-(2-amino-ethylamino)-hexyl]-benzamide platinum(II) dichloride ((Bz-en)PtCl[subscript 2])), terminates in a benzamide moiety, which lacks affinity for the ER. Using a competitive binding assay, Est-en had 28% relative binding affinity (RBA) for the ER as compared to 17β-estradiol. After covalent binding to a synthetic DNA duplex 16-mer, the compound retained its affinity for the ER; specificity of the binding event was demonstrated by the ability of free 17β-estradiol as a competitor to disrupt the DNA adduct-ER complex. The (Est-en)PtCl[subscript 2] compound showed higher toxicity against the ER positive ovarian cancer cell line CAOV3 than did the control compound. (Est-en)PtCl[subscript 2] was also more toxic to the ER positive breast cancer line, MCF-7, than to an ER negative line, MDA-MB231.
[发布日期] [发布机构] Elsevier
[效力级别] [学科分类]
[关键词] [时效性]