已收录 272643 条政策
 政策提纲
  • 暂无提纲
Sidorenko's Conjecture, Colorings and Independent Sets
[摘要] Let $\hom(H,G)$ denote the number of homomorphisms from a graph $H$ to a graph $G$. Sidorenko's conjecture asserts that for any bipartite graph $H$, and a graph $G$ we have$$\hom(H,G)\geq v(G)^{v(H)}\left(\frac{\hom(K_2,G)}{v(G)^2}\right)^{e(H)},$$where $
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 离散数学和组合数学
[关键词] Colorings;Independent sets;Large girth graphs [时效性] 
   浏览次数:25      统一登录查看全文      激活码登录查看全文