已收录 273175 条政策
 政策提纲
  • 暂无提纲
Stromal modulation of bladder cancer-initiating cells in a subcutaneous tumor model
[摘要] The development of new cancer therapeutics would benefit from incorporating efficient tumor models that mimic human disease. We have developed a subcutaneous bladder tumor regeneration system that recapitulates primary human bladder tumor architecture by recombining benign human fetal bladder stromal cells with SW780 bladder carcinoma cells. As a first step, SW780 cells were seeded in ultra low attachment cultures in order to select for sphere-forming cells, the putative cancer stem cell (CSC) phenotype. Spheroids were combined with primary human fetal stromal cells or vehicle control and injected subcutaneously with Matrigel into NSG mice. SW780 bladder tumors that formed in the presence of stroma showed accelerated growth, muscle invasion, epithelial to mesenchymal transition (EMT), decreased differentiation, and greater activation of growth pathways compared to tumors formed in the absence of fetal stroma. Tumors grown with stroma also demonstrated a greater similarity to typical malignant bladder architecture, including the formation of papillary structures. In an effort to determine if cancer cells from primary tumors could form similar structures in vivo using this recombinatorial approach, putative CSCs, sorted based on the CD44+CD49f+ antigenic profile, were collected and recombined with fetal bladder stromal cells and Matrigel prior to subcutaneous implantation. Retrieved grafts contained tumors that exhibited the same structure as the original primary human tumor. Primary bladder tumor regeneration using human fetal bladder stroma may help elucidate the influences of stroma on tumor growth and development, as well as provide an efficient and accessible system for therapeutic testing.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 肿瘤学
[关键词] Bladder cancer;cancer stem cell (CSC);subcutaneous tumor model;stroma;sphere [时效性] 
   浏览次数:25      统一登录查看全文      激活码登录查看全文