Combinatorial optimization problems with concave costs
[摘要] (cont.) Our technique preserves constant-factor approximation ratios as well as ratios that depend only on certain problem parameters, and exact algorithms yield exact algorithms. For example, we obtain new approximation algorithms for concave cost facility location and concave cost joint replenishment, and a new exact algorithm for concave cost lot-sizing. In the third part, we study a real-time optimization problem arising in the operations of a leading internet retailer. The problem involves the assignment of orders that arrive via the retailer;;s website to the retailer;;s warehouses. We model it as a concave cost facility location problem, and employ existing primal-dual algorithms and approximations of concave cost functions to solve it. On past data, we obtain solutions on average within 1.5% of optimality, with running times of less than 100ms per problem.
[发布日期] [发布机构] Massachusetts Institute of Technology
[效力级别] [学科分类]
[关键词] [时效性]