已收录 273091 条政策
 政策提纲
  • 暂无提纲
Training a terrain traversability classifier for a planetary rover through simulation:
[摘要] A classifier training methodology is presented for Kapvik, a micro-rover prototype. A simulated light detection and ranging scan is divided into a grid, with each cell having a variety of characteristics (such as number of points, point variance and mean height) which act as inputs to classification algorithms. The training step avoids the need for time-consuming and error-prone manual classification through the use of a simulation that provides training inputs and target outputs. This simulation generates various terrains that could be encountered by a planetary rover, including untraversable ones, in a random fashion. A sensor model for a three-dimensional light detection and ranging is used with ray tracing to generate realistic noisy three-dimensional point clouds where all points that belong to untraversable terrain are labelled explicitly. A neural network classifier and its training algorithm are presented, and the results of its output as well as other popular classifiers show high accuracy on test data sets after training. The network is then tested on outdoor data to confirm it can accurately classify real-world light detection and ranging data. The results show the network is able to identify terrain correctly, falsely classifying just 4.74% of untraversable terrain.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 自动化工程
[关键词] Planetary rovers;planetary exploration;neural networks;autonomous navigation;LiDAR;classification [时效性] 
   浏览次数:23      统一登录查看全文      激活码登录查看全文