An improved real-time object proposals generation method based on local binary pattern:
[摘要] Generating a group of category-independent proposals of objects in an image within a very short time is an effective approach to accelerate traditional sliding window search, which has been widely used in preprocessing step of object recognition. In this article, we propose a novel object proposals generation method to produce an order set of candidate windows covering most of object instances. With combination of gradient and local binary pattern, our approach achieves better performance than BING in finding occluded objects and objects in dim lighting conditions. In experiments on the challenging PASCAL VOC 2007 data set, we show that our approach is significantly more accurate than BING. In particular, using 2000 proposals, we achieve 97.6% object detection rate and 69.3% mean average best overlap. Moreover, our proposed method is very efficient and takes only about 0.006 s per image on a laptop central processing unit. The detection speed and high accuracy of proposed method mean that it can be applied to recognizing specific objects in robot visions.
[发布日期] [发布机构]
[效力级别] [学科分类] 自动化工程
[关键词] Objectness;proposal generation;local binary pattern;computer vision;object detection [时效性]