Learning and Chaining of Motor Primitives for Goal-Directed Locomotion of a Snake-Like Robot with Screw-Drive Units:
[摘要] Motor primitives provide a modular organization to complex behaviours in both vertebrates and invertebrates. Inspired by this, here we generate motor primitives for a complex snake-like robot with screw-drive units, and thence chain and combine them, in order to provide a versatile, goal-directed locomotion for the robot. The behavioural primitives of the robot are generated using a reinforcement learning approach called âPolicy Improvement with Path Integralsâ (PI2). PI2 is numerically simple and has the ability to deal with high-dimensional systems. Here, PI2 is used to learn the robot's motor controls by finding proper locomotion control parameters, like joint angles and screw-drive unit velocities, in a coordinated manner for different goals. Thus, it is able to generate a large repertoire of motor primitives, which are selectively stored to form a primitive library. The learning process was performed using a simulated robot and the learned parameters were successfully transferred to the real robot. By selecting different primitives and properly chaining or combining them, along with parameter interpolation and sensory feedback techniques, the robot can handle tasks like achieving a single goal or multiple goals while avoiding obstacles, and compensating for a change to its body shape.
[发布日期] [发布机构]
[效力级别] [学科分类] 自动化工程
[关键词] Snake-like Robot Using Screw-drive Mechanism;Goal-directed Locomotion;Motor Primitives;Reinforcement Learning;Policy Improvement With Path Integrals [时效性]