已收录 271055 条政策
 政策提纲
  • 暂无提纲
Aldolase A promotes proliferation and G 1 /S transition via the EGFR/MAPK pathway in non-small cell lung cancer
[摘要] Our previous study demonstrated that aldolase A (ALDOA) is overexpressed in clinical human lung squamous cell carcinoma and that ALDOA promotes epithelial–mesenchymal transition and tumorigenesis. The present study aimed to explore the function of ALDOA in the modulation of non-small cell lung cancer (NSCLC) proliferation and cell cycle progression and the potential mechanism. ALDOA was knocked down by short hairpin RNA in H520 and H1299 cells. ALDOA was overexpressed with vectors carrying the full-length ALDOA sequence in H1299 and H157 cells. The proliferation capacities were assessed with immunohistochemical staining, Cell Counting Kit-8 and colony formation assays. The cell cycle distribution was examined by flow cytometry, and molecular alterations were determined by western blotting. Cell synchronization was induced with nocodazole. The stability of cyclin D1 mRNA was tested. The pyruvate kinase M2 and ALDOA protein distributions were examined. Aerobic glycolysis was evaluated with Cell Titer-Glo assay, glucose colorimetric assay and lactate colorimetric assay. ALDOA knockdown inhibited the proliferation and G1/S transition in H520 cells. Conversely, ALDOA overexpression promoted the proliferation and G1/S transition in H157 cells. The cell cycle synchronization assay showed that ALDOA expression increased in the G1 phase and G1/S transition. Furthermore, ALDOA knockdown reduced cyclin D1 expression by regulating epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) pathway. Similar results were found in H1299 and H157 cells. The inhibition of mitogen-activated protein kinase kinase 1/2 prompted the nuclear distribution of ALDOA. Additionally, ALDOA knockdown reduced nuclear distribution of PKM2, the extracellular lactate and intracellular adenosine triphosphate concentrations and elevated the extracellular glucose concentration. ALDOA contributed to activation of the EGFR/MAPK pathway, thus promoting cyclin D1 expression and enhancing proliferation and G1/S transition in NSCLC. Additionally, ALDOA facilitated NSCLC aerobic glycolysis.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 肿瘤学
[关键词] ALDOA;NSCLC;Proliferation;G1/S;EGFR/MAPK;Cyclin D1;Aerobic glycolysis [时效性] 
   浏览次数:8      统一登录查看全文      激活码登录查看全文