已收录 273081 条政策
 政策提纲
  • 暂无提纲
Development of a distributed water quality model using advanced hydrologic simulation
[摘要] Cypress Creek is an urbanizing watershed in the Gulf Coast region of Texas that contributes the largest inflow of urban runoff containing suspended solids to Lake Houston, the primary source of drinking water for the City of Houston. Historical water quality data was statistically analyzed to characterize the watershed and its pollutant sources. It was determined that the current sampling program provides limited information on the complex behaviors of pollutant sources in both dry weather and rainfall events. In order to further investigate the dynamics of pollutant export from Cypress Creek to Lake Houston, fully distributed hydrologic and water quality models were developed and employed to simulate high frequency small storms. A fully distributed hydrologic model, Vflo(TM) , was used to model streamflow during small storm events in Cypress Creek. Accurately modeling small rainfall events, which have traditionally been difficult to model, is necessary for investigation and design of watershed management since small storms occur more frequently. An assessment of the model for multiple storms shows that using radar rainfall input produces results well matched to the observed streamflow for both volume and peak streamflow. Building on the accuracy and utility of distributed hydrologic modeling, a water quality model was developed to simulate buildup, washoff, and advective transport of a conservative pollutant. Coupled with the physically based Vflo(TM) hydrologic model, the pollutant transport model was used to simulate the washoff and transport of total suspended solids for multiple small storm events in Cypress Creek Watershed. The output of this distributed buildup and washoff model was compared to storm water quality sampling in order to assess the performance of the model and to further temporally and spatially characterize the storm events. This effort was the first step towards developing a fully distributed water quality model that can be widely applied to a wide variety of watersheds. It provides the framework for future incorporation of more sophisticated pollutant dynamics and spatially explicit evaluation of best management practices and land use dynamics. This provides an important tool and decision aid for watershed and resource management and thus efficient protection of the sources waters.
[发布日期]  [发布机构] Rice University
[效力级别] sciences [学科分类] 
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文